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Abstract

Soft pneumatic robot manipulators are popular in industrial and human-interactive applications due to their compliance
and flexibility. However, deploying them in real-world scenarios requires advanced sensing for tactile feedback and
proprioception. Our work presents a novel vision-based approach for sensorizing soft robots. We demonstrate our
approach on PneuGelSight, a pioneering pneumatic manipulator featuring high-resolution proprioception and tactile
sensing via an embedded camera. To optimize the sensor’s performance, we introduce a comprehensive pipeline that
accurately simulates its optical and dynamic properties, facilitating a zero-shot knowledge transition from simulation to
real-world applications. PneuGelSight and our sim-to-real pipeline provide a novel, easily implementable, and robust
sensing methodology for soft robots, paving the way for the development of more advanced soft robots with enhanced

sensory capabilities.
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1 Introduction

Soft robots are increasingly recognized as the future of
robotics due to their flexibility and intrinsic safety(Rus
and Tolley (2015)). Their ability to comply with the
external environment makes them particularly advantageous
in fields such as agriculture(Qiu et al. (2023); Uppalapati
et al. (2020)), the food industry(Wang et al. (2020b)),
logistics(Dottore et al. (2024); Ching et al. (2024)), assistive
and rescue robotics(Zhou et al. (2024); Hawkes et al. (2017)),
and medical applications(Rosalia et al. (2024); Beatty et al.
(2023); Rosalia et al. (2023)). However, sensing in soft
robots remains a significant challenge. Unlike rigid robots,
which have a limited number of joints and links, every point
on a soft robot’s surface can contribute to its overall shape
and function, resulting in a much higher-dimensional state
space. Additionally, the complex and nonlinear nature of
soft materials complicates the modeling and control of soft
robots. The highly deformable structure of soft robots further
complicates integration with conventional rigid circuits and
electronics, which are typically used in traditional sensors
designed for rigid robots.

In this paper, we introduce PneuGelSight, a novel vision-
based sensor designed for soft robotic fingers that combines
high-dimensional proprioception and tactile sensing. The
sensor is integrated into a pneumatically driven soft finger
and leverages high-dimensional visual input and deep
learning algorithms to model the highly nonlinear behavior
of soft robots. For proprioception, we connect the 3D shape
of the robotic finger to the deformation of 2D geometrical
features with feature fusion technique. For tactile sensing,
we apply the same principle as GelSight to measure the
geometry of the contact surface. To overcome the challenge
of integrating sensors within the deformable structure of a
soft robotic finger, we propose an innovative design that
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uses optical fibers for illumination and combines data-driven
methods with proprioception results. This approach ensures
accurate measurement of surface geometry regardless of the
overall deformation of the soft finger. A key innovation
of our method is the use of simulation. First, we employ
optical simulation(Agarwal et al. (2021, 2025)) to evaluate
and optimize the sensor design for tactile sensing, allowing
us to identify the optimal design parameters for the soft
sensor. Second, we use mechanical simulation and graphical
rendering to generate large-scale deformation data and its
connection to camera output to train a neural network for
proprioception. This simulation-based approach provides an
effective solution to the design and sensing challenges in soft
robotics.

Our previous works Yoo et al. (2023); Wang et al.
(2020a) first introduced the method of using internal
vision and deep learning techniques to reconstruct the
high-dimensional 3D shapes of the soft robots. The
proprioception sensing capability of PneuGelSight extends
this prior work by improving both the visual pattern design
and algorithms. These enhancements enable the sensor to
support both proprioception and tactile sensing using a
single onboard camera, while also delivering significantly
improved performance in shape reconstruction. Experiments
demonstrate that our system accurately senses both large-
scale deformations due to actuation or environmental
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Figure 1. Design and Sensing Pipeline of PneuGelSight. (A) PneuGelSight gripper (left) grasping an object, with corresponding
camera-captured images (middle) and high-resolution proprioceptive sensing result (top right) and tactile reconstruction of surface
contact geometry (bottom right). (B) Mechanical design of the PneuGelSight sensor. The sensor integrates a deformable silicone
layer, a reflective surface, and internal optical fibers for illumination. Upon contact, deformation alters the internal light pattern,
which is captured by the embedded camera. (C) Data processing pipeline for sensing. A dual-branch network processes the
captured image by extracting contour features for global shape reconstruction and color cues for local contact geometry.

interaction and fine details of object surfaces in contact.
This capability enables soft grippers to better understand
both the global and local shape of objects, enhancing object
recognition and property sensing. Our system significantly
improves the ability of soft robots to perform complex
grasping and manipulation tasks. The proposed methodology
of using deep learning for high-dimensional modeling and
simulation for sensor design can be extended to the sensing
system design for other soft robots.
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2 Related Works
2.1 Sensing for Soft Robot

Traditionally, soft robot sensing has relied on a combination
of point-based or string-based sensing units. These sensors
can be either resistive(Si et al. (2023); Xu et al. (2024);
Farrow and Correll (2015)), capacitive(Larson et al. (2016);
Robinson et al. (2015)), magnetic(Alfadhel and Kosel
(2015); Yan et al. (2021)), or based on optical(Zhang
et al. (2022); Zhao et al. (2016); Scharff et al. (2021)).
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The signals measured at each sensing unit allow for a
general estimation of the robot’s deformation (perception)
and contact information, such as location and force (tactile
sensing). However, point-based sensors face limitations
in spatial resolution and require quadratic increases in
resources to scale up the sensing array. In the human
hand, there are approximately 17,000 tactile units (Vallbo
and Johansson (1984)), and replicating this level of sensor
density while effectively processing the data remains a
challenge for point-based systems. For string-based sensors,
the signal is aggregated through the entire string, which
causes confusion for contact area localization and limits the
spatial accuracy of sensing.

Alternatively, researchers have looked into novel solutions
for soft robotic sensing in recent years, including acoustic
(Wall et al. (2023)) and vision-based sensing(Yoo et al.
(2023); Nakao et al. (1990)). Acoustic sensing has been
shown to work well with soft structures, achieving sensing
with a simple embedded microphone. But like string sensors,
the sound received at the end-effector is aggregated through
the whole body, limiting the sensing resolution. Vision-
based sensing, originally proposed for precise contact texture
reconstruction, remains underexplored in soft robotics. Our
previous work, Yoo et al. (2023) , demonstrated high-
resolution perception in a soft robot by leveraging a hollow
structure embedded with densely distributed internal visual
markers. An internal camera captured the motion of these
markers during deformation, and a simple neural network
was used to reconstruct the robot’s real-time shape as a
dense point cloud. That study also introduced a sim-to-real
pipeline in zero seconds to streamline data collection for
model training.

In this paper, we extend that framework to achieve high-
dimensional proprioception sensing with PneuGelSight,
introducing two key improvements. First, we utilize the
intrinsic optical patterns of the tactile sensor as visual cues
for deformation tracking, enabling simultaneous tactile and
proprioceptive sensing from a single camera. Second, we
redesign the shape reconstruction pipeline by incorporating a
pretrained autoencoder to encode the undeformed geometry
of the robot. The online sensory input is then used to estimate
deformation relative to this shape prior. This new approach
improves shape tracking accuracy from 8.85 mm to 5.35
mm and offers greater robustness under large deformation
scenarios.

2.2 Vision-based Tactile Sensing

Vision-based sensing leverages embedded cameras to detect
changes in optical signals related to the physical parameters
being measured. Vision-based tactile sensors(Yuan et al.
(2017); Chorley et al. (2009); Yamaguchi and Atkeson
(2017)) output data in the form of images, boasting
spatial resolution to several micrometers to acquire detailed
information about surface topography. A good example of
this type of the sensor is GelSight(Yuan et al. (2017);
Johnson et al. (2011)), which measures high-resolution
geometry of the objects in contact. A GelSight sensor uses
an embedded camera to capture the change of light reflection
from a reflective surface to infer the surface normal of the
deformed sensor surface. This involves internal light sources
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from multiple directions, which typically are labeled with
different colors.

Various GelSight designs(Zhao and Adelson (2023);
Taylor et al. (2022); Tippur and Adelson (2023); Mirzaee
et al. (2025)) have been developed to accommodate different
robotic platforms, but they all rely on a rigid base where
optical and electronic components are fixed. This structure
limits deformation to a thin, flexible surface layer, typically
within a few millimeters, and allows traditional vision-based
tactile algorithms to operate under the assumption of a static,
flat imaging plane.

In contrast, our objective is to fully sensorize a soft robot
with high-resolution proprioception and tactile sensing,
which fully leveraging the potential of vision-based sensing
principles exemplified by GelSight. While the core principle
remains similar, applying it to a highly deformable robot
introduces fundamental challenges. Traditional algorithms
for shape and contact reconstruction fail, as they cannot
accommodate non-planar deformations where the entire
sensor geometry evolves dynamically. Moreover, optical
signals are compromised under strain due to variations in
illumination, reflection, and surface normal estimation.

Our work addresses these challenges by designing a
fully deformable vision-based pneumatic gripper and a
new perception pipeline that jointly enable high-fidelity
proprioception and tactile sensing across the robot body.
Moreover, the proposed methodology is generalizable and
can be extended to a wide range of soft robotic designs.
This opens the door to a new class of sensorized soft robots
capable of precise interaction and perception in unstructured
environments.

3 Vision-based Sensorization

3.1 Pneumatic Soft Gripper with Embedded

Camera

We present the design and working principle of PneuGel-
Sight (as shown in Figure 1), a pneumatic soft finger that
integrates an embedded camera and internal illumination to
achieve both proprioception and tactile sensing. The finger’s
mechanical design is inspired by Truby et al. (2018), with
a 3D-printed bellow-shaped back and an inner side made
of a cast silicone slab. The silicone slab is made from a
harder material and is thicker, allowing the bellow structure
to elongate easily under actuation, while the silicone slab
bends but resists extension. This design ensures that the
finger bends inward during actuation, facilitating the grasp
of the target object in conjunction with the opposing finger.

In our design, the entire inner side of the finger serves
as the contact surface. The silicone slab is made from
transparent material and coated with a metallic surface layer
to achieve the desired reflectivity. The camera is embedded
in the back of the soft finger, as shown in Figure 1B. The
hollow structure of the finger ensures that the camera has an
unobstructed view of the entire contact surface, regardless of
the finger’s bending angle. The deformation of the contact
surface in the camera’s view directly corresponds to the 3D
shape of the entire finger.

The optical structure for soft robot sensing consists of
three components: an embedded camera, an illumination
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Figure 2. Optimization for Optical Design. Comparison of
simulated images with various optical designs and real images
under different bending angles, along with their corresponding
variance scores. The design with the highest variance is
selected for real-world fabrication.

system, and a soft reflective surface on the top of the silicone
slab where contact happens. The illumination system directs
light onto the reflective surface, which then scatter lights in
various directions depending on the surface normals on the
contact surface. The embedded camera, positioned to face
the reflective surface, captures color changes caused by light
reflection. These variations in light reflection are used to
calculate the surface normals, which are then integrated to
reconstruct the 3D geometry of the object’s surface.

The design of the illumination system is critical for
achieving high-quality tactile sensing and presents a
significant design challenge. The goal is to create a uniformly
distributed light field across the sensing surface while
maintaining distinctive light reflection patterns for different
surface normals. Additionally, the system must be compact
and flexible to accommodate the extensive deformations of
the soft finger. To meet these requirements, we implement
an array of 0.75 mm optical fibers for illumination. These
fibers are adhered to the sides of the silicone slab, guiding
light from a remote source to the sensing surface. At the
connection points, we add a layer of translucent silicone
as a diffuser to ensure that the light is evenly distributed
across the surface. This design allows each optical fiber to
maintain its position during finger deformation, ensuring
consistent light direction and intensity. To enhance the
sensing accuracy, we use different colors of light for each
optical fiber, enabling precise control over the illumination
angles.

3.2 Design and Fabrication

Taking inspiration from the size of a human palm, we set the
overall dimensions of the robot to be 110 mm long and have
a semi-circular cross-section with a diameter of 55 mm.
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We use SLA 3D printing to create a two-part mold and
cast the silicone slab in three steps: opaque silicone (Smooth-
On, EcoFlex 00-30) as a light diffuser on the sides, crystal
clear silicone (Silicone Inc., XP565) in two hardness levels
by mixing silicone and curing agent at 7:1 (harder) and 14:1
(softer for better sensitivity). The soft sensing surface is then
coated with semi-specular aluminum powder and protected
with a final silicone layer (XP565, 14:1).

We 3D print the actuated body of PneuGelSight with a
compliant and flexible silicone material (Silicone 40A). The
lighting system of the robot is configured into a distinct
pattern: 6 green, 7 blue, 7 red, and 4 additional blue
fibers, arranged in clockwise order. We design some semi-
cylindrical protrusion on the side of the robot backbone to
constrain the orientation of the fibers. Each of the fibers is
glued and inserted into the protrusion manually. After the
lighting system is established, we seal the embedded camera
into the camera hole and apply more silicon glue for air
tightness. The camera’s field of view is approximately 160
degrees (Arducam, Wide Angle Camera).

3.3 Optimization for Optical Design

We use simulation to assist the optical design of
PneuGelSight for better sensing ability. Traditionally,
developing high-resolution optical-based tactile sensors
involves a repetitive trial-and-error process that demands
expert knowledge . Minor changes to the optical system
can significantly affect sensor performance, making it
challenging to optimize the design for sensing ability. This
difficulty is heightened in our soft sensing system, which
must adapt to complex deformations, such as grasping
objects of varying sizes, while maintaining sensing accuracy.
Recently, Agarwal et al. (2021, 2025) applied physics-based
rendering (PBR) techniques to simulate vision-based tactile
sensors, allowing for rapid adjustments to optical elements
and sensor surface properties in a simulated environment.
Inspired by PBR, we simulate images to optimize color
arrangements for improved sensing ability and apply the
optimal design in sensor fabrication.

To transfer the optimal design from simulation to the real
sensor, we must account for discrepancies between simulated
and real images, as shown in Figure 2, rows 2 and 3.
Overall, the color distribution aligns well, with minor edge
distortions near the light source. Preliminary experiments
with different color arrangements showed a consistent trend
between simulated and real setups. Although not an exact
match, the design quality remains consistent, enabling the
transfer of the optimal design to the real sensor.

The design factor we aim to optimize in the simulation
is the color arrangement, corresponding to the placement
of optical fibers in the real-world sensor. We propose
using color variance within the contact area as a metric
to evaluate designs. The intuition behind this metric is
photometric stereo(Johnson and Adelson (2011)), which
suggests that the sensing ability for such optical-based
sensors relies on the color distinction between different
surface normals—a higher distinction makes it easier for
the camera to differentiate these normals. In the simulation
experiment we use a sphere with radius = Smm to indent
the surface as shown in Figure 2, and the color variance
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within this area effectively approximates color distinction.
The variance metric o2 can be expressed as:

1
o’ = [ (Ci — p)? (1)
contact 1€ Acontact
where the mean color p over Agoact 18:
1
= — C; 2)
"7 Meontad 1

1€ Acontact

To identify the design that best handles complex
deformations, we evaluate the sensor’s performance under
various bending scenarios, considering different internal
pressures and external contacts. For each color design, we
average the performance scores across all bending scenarios
and sphere-indented locations, selecting the design that
maximizes the score as the final color arrangement. This
arrangement is then implemented in the real-world sensor,
as shown in Figure 2. In subsequent experiments, we adjust
the camera’s exposure rate to improve color representation.

4 Proprioception: Sensing Robot
Deformation

The PneuGelSight sensor is designed to achieve high-
resolution proprioception based on the camera’s input. The
proprioception, which aims to model the deformed geometry
of the entire finger, can capture the fine-grained deformation
caused by either actuation or collision with external objects.
To achieve this, we develop a machine learning method to
connect the high-resolution camera input to a high-resolution
point-cloud description of the finger’s shape.

The machine learning model uses the finger’s geometric
features as input. Specifically, it extracts the front surface
contour from a binary image and outputs a feature describing
the finger’s detailed deformation based on the original point-
cloud shape. To improve the efficiency of data collection, we
develop a physics-based simulation framework to collect the
camera’s data under different robot deformation cases, and
then perform a zero-shop transfer to the real robot. Our new
method includes a PointNet(Qi et al. (2017)) auto-encoder
to address the new challenge of the geometrical feature
as input since the complicated nature of the sensor design
contained our choice of customizing the geometrical markers
to extract from the finger. Unlike the previous method, which
directly predicts the finger’s shape, our new model learns
a deformation feature that is applied to the original shape
and efficiently captures high-dimensional deformation from
simple input features by incorporating shape priors.

4.1 Data Collection

Our primary focus with dynamic FEM simulations is on the
robot’s interactions with objects, during which it undergoes
deformation either actively or passively. We record all these
states during each trial and export detailed mesh data for
further analysis.

Two factors are randomized for augmentation during
the simulation: the pressure of pneumatic actuation and
contact conditions with an external object. We illustrate 6
selected bending scenarios in Figure 3 as a demonstration.
Sequentially, the actuated robot interacts with a series
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Figure 3. Overview of FEM scenes in the dataset, with the blue
arrow indicating the movement direction of the external object.

of fixed objects—a wall, a cube, and a cylinder—and a
moving plane, approaching from various directions including
bottom-up, from the side, and top-down. For each bending
case, we record the dynamic process until the robot reaches
a steady state, and save all the mesh data to build the FEM
dataset. In total, we simulate 26 different scenes and produce
3,000 images corresponding to the FEM dataset. To reduce
the gap between real and simulated data distributions, we
augment the simulated images during training, improving
the model’s ability to generalize to real-world conditions
and enhancing its robustness to variations not present in the
simulated dataset.

4.2 Network Architecture

An overview of the proprioception model architecture is
presented in Figure4. First, we pre-train a feature extractor
for robot shapes. It is designed to capture both low-level
and high-level features from dense point cloud data, reducing
noise introduced by using high-dimensional representations.
The network architecture is adapted from PointNet (Qi et al.
(2017)), with modifications to the depth of the encoder and
decoder. In each training step, we sample N = 4096 points
from a single robot mesh within the FEM dataset and try to
reconstruct the same point clouds with decoder’s output. The
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Figure 4. Proprioception Pipeline. (A) Pre-training the auto-encoder to reconstruct robot shape points cloud. (B) The
architecture of proprioception network (ProprioNet). The feature extracted from the shape reference is modified by image feature in

the latent space, and then mapped to the deformed point clouds.
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loss for this stage Lyecon 1S defined as:

Lrecon = CD(P» precon)

Where p stands for point clouds p € RN*3, and CD
indicates standard chamfer distance. This stage is noted as

the ‘pre-train’ stage in the following text.
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After the pre-training stage, we train a conditional
PointNet-based network to predict point cloud deformation
using contour data derived from the binarized captured
image. The Encoder and Decoder modules in Figure 4B
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are adapted from the pre-training stage, with weights of the
Encoder being frozen during subsequent training. During the
second training process, We sample point clouds from both
the undeformed and deformed mesh with a density of NV
and extract the corresponding contact gel contour as binary
mask. Based on a Resnet module (He et al. (2016)), our
image encoder encodes the binary mask into a latent visual
feature vector. This feature is spatially repeated and added to
the reference point and global features through element-wise
summation. The reference features are extracted from the
undeformed mesh noted as shape ref. In summary, the second
stage can be viewed as a conditional regression problem,
integrating visual inspection into the trained auto-encoder to
guide deformation prediction within the same 3D space.

During the second training stage, the loss function
integrates the Mean Squared Error (MSE) between the
current global feature g predicted by the multi-modal
ProprioNet encoder, and the global feature gpre-iraineds
extracted by the auto-encoder. Additionally, we keep
Chamfer Distance as part of the loss calculation to enforce
low-level similarity. The loss function for the second stage is
then formalized as follows:

1
L= Lrecon + N ||g - gpre—trained”2 (4)

5 Tactile Sensing: Surface Textures
Reconstruction

3D reconstruction of the contact surface provides the most
precise tactile feedback available for all tactile sensors. It
helps in understanding the surface property of the object,
facilitating the estimation and manipulation process. While
small, rigid GelSight sensors can easily achieve surface
reconstruction using a lookup table, achieving similar results
algorithmically with a deformable GelSight sensor under
complex lighting conditions remains a challenge for the
entire community(She et al. (2020); Ma et al. (2024)).
To address this, we propose a novel pipeline based on
mathematical estimation and machine learning, as shown in
Figure 5.

Our pipeline consists of three modules: the region
proposal module, the background estimation module, and
the 3D reconstruction module. The first two modules are
combined as a ’pre-selection’ process, predicting the most
probable contact area for each captured image. During
this process, the region proposal module first generates
a fixed number of bounding boxes as contact proposals
that cover the whole sensing area (36 boxes in the
experiment), and the background estimation module then
predicts a background image for each of these proposals. In
those estimated background images Iyackground, the contact
feature is removed and possible color under the same
deformation state fills the contact regions. For each of those
(Iimages Ibackground) pairs, the color difference score AC' is
calculated as

AC = Z ‘Iimage - Iback:ground| (5)

where Iinmages Ivackground € RHXWX3 "and H,W are the
height and width of captured images, respectively. The
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proposal with the highest AC is selected as the most
plausible contact area and sent to the reconstruction module.

After the pre-selection stage, the reconstruction module
predicts the surface normals (N,, N,, N,) for all the pixels
in the contact region, and Poisson integration is applied to
reconstruct the 3D mesh. We demonstrate the whole tactile
reconstruction process in Figure 5.

5.1 Region Proposal and Background

Estimation Module

The pre-selection process identifies the most probable
contact region within the captured image. Unlike traditional
U-Net-based (Ronneberger et al. (2015)) segmentation
methods, our module requires no additional training and
offers improved generalization across different bending
scenarios. In our experiment, the region proposal module
generates uniformly distributed bounding boxes over the 2D
image space, followed by background image estimation for
each proposal.

Before diving into the details of background estimation,
we first build a physical model for the lighting process. For
a spotlight 7, it’s light intensity value I; ; at pixel position ¢
can be expressed as the follows:

1
Ii,j = Ai,j X Ij = dT COS(@ij) COS((bZ‘j)a X Ij (6)
ij

24
Li=> I )
j=1

Where I; stands for the light intensity at pixel ¢. In this
function d;; represents the distance between the pixel 7 and
light 7, 0;; is the angle between the pixel’s normal and the

~L ), with 2 denoting

light direction (calculated as arctan (d” )
the thickness of the contact gel), and ¢;; is the angular
displacement in the 2D plane between the spotlight-like j-th
light and the i-th pixel. This expression combines the inverse
square law to adjust for distance, and a directional cosine
component, modified by an exponent «, to account for the
alignment and angular displacement between the pixel and
light source.

Assume a color space where the color value is proportional
to light intensity I, and the relationship is expressed as
b = Az, where:

* b € R™*3 represents the linearized color values

+ A € R"*? s a coefficient matrix calculated by (6)

o € R?**3 denotes the light intensity, which is scaled
by a constant factor « such that x = al

We sample n points near the contact area to obtain color
values, and estimate the light intensity « from the coefficient
matrix A and the measured color values b by solving
the inverse problem, x = A~1b. Once x is estimated, the
background color within the contact region can be computed
through forward estimation, b’ = A’x, where A’ is a new
coefficient matrix that depends on the pixel location.

To change the representation of color to a space where the
value is linearly related to the intensity, we can apply the
following color space transformation:
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with 71, 7o being the threshold for illumination.

5.2 Network Architecture

We construct a dataset of (Limqage, N) pairs to train the
reconstruction network, with N = (N, Ny, N,) standing
for the surface normals. To create the dataset, we indent
the real PneuGelSight sensor with a Smm radius sphere at
various locations and manually labeled the surface normal.
During the training process, the region proposal module
is disabled since the ground truth contact locations are
known. We use the background reconstruction module
to calculate the color difference and use it as the main
input to the reconstruction network. Considering that MLP
doesn’t require spatial information, We rearrange those data
accordingly to be of shape R™*2%, where m = 2000 is the
number of pixels used in one iteration, and 29 means that for
each pixel, all color value within a 3 range (€ R'*?7) as well
as its (x, y) position (€ R!'*?)are considered when doing the
reconstruction. To gather enough training samples of m, we
use all pixels within the contact region as well as some points
outside the contact range, with their corresponding surface
normal set to be (0, 0, 1).

The reconstruction network is a conditional MLP with
an Encoder-Decoder structure. A 3-layer MLP encoder
extracts color features and integrates global features from the
pre-trained ProprioNet, as mentioned earlier. The decoder,
also a 3-layer MLP, reconstructs surface normals using the
fused features. The network is trained using a simple MSE
loss between the predicted normals and the ground truth
normals. Figure 5 illustrates our complete pipeline for 3D
reconstruction from a single image. To our knowledge, this
is the first successful method for reconstructing the contact
geometry of a fully deformable vision-based tactile sensor.

6 Experimental Evaluation of Sensing
Ability
6.1 High-Resolution Proprioception

A demonstration of the proprioception result is shown in
Figure 6. We quantify the results by measuring the standard
chamfer distance in mm between the ground truth captured
by RGBD camera and the predicted points, where lower
values indicate better accuracy. The metric is calculated
through the whole actuation process, and for simplicity, we
only visualize the most significant scene in Figure 6.

We select five general test cases, two of which are neural
pose and natural bending to represent typical scenarios
during gripper operation, and others are bending forward,
backward and lateral bending with external load. We present
both side view (aligned with external image) and top views to
help better interpret the point clouds. As visualized in Figure
7, our model achieves Chamfer Distances of 2.21, 6.76, 8.76,
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2.12, and 7.09 mm for each test case, using a point cloud
density of N=4096. The mean Chamfer Distance across
all collected cases is 5.35 mm. Notably, even in the edge
case of lateral bending—which is mechanically constrained
and potentially harmful in real-world scenarios—the model
demonstrates reasonable accuracy in reconstructing the
deformation.

We further analyze the effect of point cloud density on
inference performance. As expected, increasing density leads
to improved accuracy but also higher computational cost and
longer inference time on limited computational resources.
To evaluate the feasibility of real-time deployment, we
benchmark the model on an NVIDIA RTX 4070 GPU.
In this setting, the model achieves inference times below
0.05 seconds even at the highest resolution (N=8192),
demonstrating its capability to deliver high-precision
proprioceptive feedback suitable for real-time control tasks.

6.2 Vision-based Tactile Sensing

We present both qualitative and quantitative tactile sensing
results in Figure 8. It is evident that external contact
geometry generates a strong optical signal in the tactile
image, and with our proposed pipeline, we can distinguish
between different surface normals of the contact object by
analyzing color differences and reconstruct a 3D mesh of the
texture.

Our method is robust across different actuation states of
the finger. Figure 8A shows tactile sensing results for various
bending angles. Although larger bending angles alter the
light distribution and reduce sensing ability, our algorithm
ensures reliable reconstruction and keeps tactile sensing
largely unaffected at all stages.

In Figure 8B we visualize sensing results with common
objects pressed onto the surface. For objects with
pronounced textures and significant height variations, such as
nuts, screws, and screwdrivers, our system reconstructs their
textures with high fidelity. Even for objects with finer details,
like a lemon, the rough surface is captured. A key feature
of our sensor is its varying sensing ability across the large
surface, with reduced resolution near the tip. When pressing
a UIUC icon, the system disregards the rightmost area, as
fine details are harder to perceive in that region.

To better quantify the tactile reconstruction performance
of the sensor across varying resolutions and spatial positions,
we introduce two key metrics: (1) the Chamfer distance
between the geometry of the ground truth indenter and
the reconstructed mesh, which assesses the ability of the
system to resolve fine textures; and (2) the maximum
depth error in the indentation, which reflects accuracy in
capturing contact depth. For this evaluation, we 3D print
a small six-faced pyramid indenter (§mm diameter, 2mm
height). We conducted experiments at six distinct indentation
locations along the longitudinal axis of the sensor and at
eleven pressure levels, ranging from neutral pose (1 atm) to
standard operating pressure (1.35 atm). The resulting error
distributions are visualized in a grid-form error map, as
visualized in 8C.

On average, the best Chamfer distance score in all tests
is 0.18 mm, with the lowest errors observed in the central
region of the sensor at lower pressure levels. The maximum
depth error remains below 0.2 mm in the central region
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for all bending angles, demonstrating high precision in
estimating indentation depth. While the sensor’s sensitivity
decreases slightly when indentations occur near the border
regions or under higher internal pressures, it still produces
reasonable and reliable reconstructions across all tested
conditions. These results confirm improved reconstruction
fidelity in areas with better visual coverage and moderate
actuation, highlighting the robustness and generalizability of
our proposed sensing system.

6.3 Tactile Sensitivity

We define tactile sensitivity as the system’s ability to resolve
small contact forces and detect surface textures, which
is important but hardly evaluated in current vision-based
sensors. To evaluate this aspect, we employ two spherical
indenters: a small sphere with a diameter of Smm and a large
sphere with a diameter of 35mm. These represent the lower
and upper bounds of contact area sizes that our sensor can
reliably detect. Consequently, we assume that the sensor’s
sensitivity for other objects falls within the performance
range established by these two reference cases.

We conducted experiments using a URS5e robot arm
equipped with those two indenters, along with a force-
torque sensor (Nordo Robotics, NRS-6050-D80) mounted
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between the end-effector and the indenter. The arm was
programmed to press against a PneuGelSight sensor with
constant force, while the sensor was constrained to a flat
shape to maintain consistent lighting conditions across
different pressure levels. In Figure 9B, we present a series
of x-axis cropped images, each corresponding to different
normal forces, with the internal pressure set at 1.35 atm. The
indenter’s surface texture first becomes visible in the second
image of the sequence, which we define as the detection
threshold. The corresponding force value is then taken as the
minimum detectable force.

In Figure 9A, we plot the relationship between minimum
detectable force and internal pressure for both indenters. As
internal pressure increases, the minimum force required for
reliable detection also rises. Based on this data, the sensor
demonstrates a sensitivity range approximately between
0.2N and 0.95N at 1.35atm, reflecting its ability to resolve
subtle contact forces across varying object sizes.

The sensor’s tactile sensitivity is primarily influenced
by the softness of the contact layer, which can be
controlled by adjusting the silicone-to-curing agent ratio
during fabrication. Softer layers enhance the sensor’s ability
to detect finer details and smaller forces, making it suitable
for delicate tasks. However, for tasks that require higher
force, such as twisting an apple off a branch, increasing
the hardness of the contact layer provides better structural
support and stability under load.

This trade-off between force and precision has been
a focus of recent research(Teeple et al. (2020)), which
highlights the balance between maintaining tactile sensitivity
and enabling the sensor to withstand greater forces. In
our gripper design, this balance is critical. A stronger,
more rigid backbone further enhances the sensor’s ability to
handle heavier tasks without sacrificing the necessary tactile
feedback required for precision tasks.
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Experiments were conducted across 11 pressure levels and 6 indentation positions along the sensor’s longitudinal axis.
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7 Evaluation of PneuGelSight in Real
World Applications

The human hand can grasp an object, rotate it, and
quickly form an estimation of its physical properties with
a few touches. This process relies on the integration of
proprioception to evaluate the object’s shape and tactile
feedback to sense subtle surface features. In the agricultural
world, such a combination of sensing is emphasized as
farmers rely on the size and texture of fruit to predict its
ripeness. Traditional robotic end effectors are often rigid
and lack advanced sensing capabilities, which can lead to
damage when handling fruit. In contrast, our PneuGelSight
sensor is well-suited for detecting these features, providing
a gentler and more accurate approach to fruit handling. In
the following experiment, we build a real-world scenario
of estimating an avocado’s shape and texture with multiple
touches. We visualize the whole process in Figure 10.

We mount our soft gripper on a URSe robot arm, and the
avocado is lying flat on the table surface without any prior
knowledge of its shape. At each time step, the last joint of
the robot arm rotates at a pre-defined angle, and the gripper
grips the avocado while capturing an image from inside the
gripper. Each image provides an estimated bending shape
of the gripper and a detailed contact texture reconstruction.
Combining these results, we achieve a comprehensive shape
and texture reconstruction of the avocado, as shown in
the sensing result column of Figure 10. The reconstructed
meshes are then stitched together for the final reconstruction.
The predicted surface shows strong alignment with each
other, and although the sensing area is currently focused on
the middle part of the avocado due to the gripper’s partial
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use of its capacity, the overall sensing area offers significant
potential.

8 Discussion: Design Considerations for
lllumination

We selected optical fibers as the primary method for
illumination due to their unique advantages in the context
of soft robotic design. Optical fibers are lightweight and
flexible, allowing them to be integrated directly into the
robot body without the need for mounting rigid PCBs or
discrete light sources onto the soft structure. This minimizes
added mass and preserves the robot’s natural compliance
and mobility. Additionally, optical fibers can produce strong,
directional illumination, which is critical for achieving clear
deformation-induced visual cues needed for vision-based
sensing.

While embedding optical fibers introduces some structural
elements into the robot, careful routing and placement
ensure that these components do not significantly impair
motion or introduce unwanted stiffness. Future designs
could further optimize this integration by embedding fibers
within the robot’s backbone to reduce the number of
external fibers. Moreover, the use of optical fibers provides a
modular foundation for alternative lighting strategies, such as
flexible light strings or multi-spectral sources, which may be
incorporated in future iterations without major mechanical
redesigns.

9 Summary

We propose integrating a vision-based sensing system
into a soft robot design, offering two key contributions:
PneuGelSight—a soft gripper equipped with high-resolution
proprioception and tactile sensing via an embedded
camera, and a physically accurate simulation pipeline
for dynamic and optical behaviors of soft manipulators.
Our PneuGelSight sensor, combining precise point cloud
proprioception data with high-resolution tactile feedback,
overcomes soft robotic sensing challenges with a single
integrated camera. Our simulation pipeline facilitates
the design, evaluation, and optimization of such soft
manipulators to achieve optimal performance. It also enables
zero-shot transfer from simulation to real-world scenarios.
On the algorithm side, we propose a pair of interconnected
neural networks. Each network is designed to process one
sensing modality from the same input, and we enable
information exchange to enhance overall sensing capability.
To the best of our knowledge, we are the first to unify
different high-resolution sensing modalities for robotic
sensing, resulting in a compact and efficient sensing pipeline.

Compared to existing sensing approaches, our solution is
more straightforward to implement while delivering high-
fidelity results in both proprioception and tactile sensing.
Both qualitative and quantitative evaluations confirm the
sensor’s reliability, with low reconstruction and alignment
errors.
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A Fabrication

The PneuGelSight sensor consists of three parts: a silicone
slab, a backbone, and a lighting system with optical fibers
and internal camera. To fabricate the silicone slab, we first
design a two-part mold using 3D printing. After assembling
and sealing the mold to prevent leakage, we sequentially pour
in diffusive, hard, and soft silicones, allowing each layer to
cure fully before adding the next. Once cured, we remove
the top mold, apply aluminum powder as a semi-specular
layer, and add a protective silicone layer. Simultaneously, we
3D print the backbone using 40A silicone and cure it with
ultraviolet light.

After the silicone slab and backbone are prepared, we
seal the silicone to the backbone. A small intrusion within
the backbone walls indicates the correct sealing position.
The height of the hard silicone is slightly larger than the
sealed depth, leaving a portion of the side area uncoated
and exposed to external light. This exposure enhances the
visibility of the contact surface contour in the embedded
camera view.

Hard Silicone Soft Silicone

=

Diffusive Silicone
6) 5 (
N %
Optical ;

Fibers
Internal Camera

Figure 11. A, Fabrication process of proposed PneuGelSight.
(1) Assembled mold (2) Silicone resin is poured into the mold.
(3) After curing, the top mold is removed. (4) Aluminum powder
is applied as semi-specular coating. (5) 3D printed body is
connected with the composite silicone slab. (6) Optical fiber and
internal camera are sealed to the body. (7) Relaxed stage of the
gripper. B, Unactuated robot configuration with dimensions.

B Optical Simulation
B.1 Optical Models

To ensure accurate simulation results, it is necessary to
model the optical properties of all components of the soft
robot gripper that can interact with light. This includes the
optical fibers, diffusive elastomer layer, transparent silicone
gel layer, reflective coating layer, and camera. However, the
soft robot body will not be modeled, as we have painted
its surface black, which absorbs all light from the inside
and blocks all light from the outside environment. In the
following paragraphs, we will discuss each part in detail.
Optical fibers are waveguides that can transport elec-
tromagnetic waves through them with little to no energy
loss. The electromagnetic wave profiles allowed to trans-
port through optical fibers are called guided modes and
are determined by the diameter and material of the optical
fibersSnyder and Young (1978). The optical fibers used in
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our robot have relatively large diameters (0.75mm in diam-
eter) which allows a large number of guided modes so that
the full energy profile could be transported. Consequently,
the distribution of the outgoing radiance of the optical fibers
entirely relies on the distribution of radiance of the source
LEDs.

To minimize the sim-to-real gap, we simulate optical
fibers and diffusive layers together as a set of point lights.
Figure 2A shows a comparison: the left column displays real-
world images captured from the embedded camera while the
right column shows simulated images under similar bending
angles. With the same color arrangement and bending
angles, the images in different domains share the same
pattern, which proves the effectiveness of our proposed PBR
pipeline.

The light models of other materials are straightforward.
We use the rough dielectric model to model the transparent
silicone layer because the rough dielectric model is suitable
for a homogeneous transparent material with a slightly
uneven surface. The coating layer is modeled by a surface
diffusive model in the previous work by our labAgarwal
etal. (2021). The wide-angle camera can be directly modeled
as a perspective camera with a certain field of view and
resolution. We neglect the geometry distortion because we
will preprocess all the images with the de-warping method
for fisheye cameras provided by Opencv library during actual
normal prediction.

B.2 Design Space Exploration

Now that we have our soft robot gripper modeled in the
simulation and the color variance of the indented part as
a metric to describe the sensing performance (mentioned
in the main paper), we can proceed to the optimization
stage. In the experiment, we observe that changes in the
light source direction do not have as much effect on sensing
performance as color choice because of our strong diffusion
layer. Therefore, we have 24 color choices of the light source
to optimize.

We do a grid search to iterate all possible combinations of
color choices to find out the best color choice. Here, we use
two tricks to reduce the work. Leveraging the superposition
of light, we render each simulation with only one LED on.
While testing on a specific color choice, we superpose the
rendering result by adding 24 images with the correct color
layout. By doing so, we reduce the number of renderings
from 324 down to 3 x 24. Also, we notice that groups of
neighboring several optical fibers with the same colored
light source tend to have a higher metric value than all
neighboring optical fibers that have different colored light
sources. Therefore, we propose to group the two nearby
optical fibers with the same color light source. We visualize
the initial and optimized states in Figure 12C, with bounding
boxes indicating the grouped optical fibers.
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Figure 12. (A), Comparison between real-world and simulated image settings. (B), Examples of real and simulated images across
various scenarios. (C), Visualization of the superposition of multiple light sources. A total of 72 images (3 sets of 24) were rendered,
followed by a grid search based on color variance metrics. (D), Initial and final states before and after optimization, with the applied
grid layout indicated by the dotted box in the figure showing the initial state.
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